Group A: Statistical Physics
Liouville's theorem
In the phase space, distribution of phase points is expressed by the probability density $f(q, p, t)$.
The probability density $\rho(q, p, t)$, in general, dependent upon time' t ' que to the motion of phase points pw the phase space.
Liouville's theorem states that the probability density $\rho(q, p, t)$ is constant along the phase trajectories of the phase points.
It is also knoion as the principle of conservation of the probability density in phase space and can be mathematically expressed as

$$
\frac{d \rho}{d t}=0
$$

Proof:
Let number of identical particles $=N$

$$
\begin{aligned}
& \text { position coordinates }=q_{1}, q_{2} \ldots q_{3 N} \\
& \text { Momentum coordinates }=p_{1}, p_{2} \ldots p_{3 N}
\end{aligned}
$$

Volume element $\left.d q d p^{2}\right\}=d q_{1} d q_{2} \ldots d q_{3 N} d p_{1} d p_{2} \ldots d p_{3 N}$ around a point (p, q). . in phase space

The number $d M$ of phase points in the volume element is given by $d M=\rho(q, p, t) d q d p$

$$
d M=\rho(q, p, t) d q d p
$$

The above equation gives number of phase points in the volume element changes with time due to morion of the phase points. The change here signifies that number of phase points entering the voume element is different from those leaving the volume element.

Now, Let us consider. a motion of phase points along the q_{1} axis.
For shat we consider two faces A and B normal to the q_{1}-axis at the
 coordinates q_{1} and $q_{1}+d q_{1}$ respectively (show in figure).
Let us aocums that phase points are entering at the face A and are leaving at the fac B.
(i) At the face A :
velocity of the phase prints along the q_{1}-axis is \dot{q}_{1}.
Let probability densily be ρ
Hence the no. of phase points entering the face A per unit area in tine dr $=\rho \dot{q}_{1} d t$
(ii) At the face B :
velocity of the phase prints along the q_{2}-axis is

$$
\Rightarrow\left(\dot{q}_{1}+\frac{\partial \dot{q}_{1}}{\partial q_{1}} d q_{1}\right)
$$

The probability density

$$
\left(\rho+\frac{\partial \rho}{\partial q_{1}} d q_{1}\right)
$$

Hence, the number of phase points leaving the face B per unit area in time do is

$$
\left(\rho+\frac{\partial \rho}{\partial q_{1}} d q_{1}\right)\left(\dot{q}_{1}+\frac{\partial \dot{q}_{1}}{\partial q_{1}} d q_{1}\right) d t
$$

Hence, the net number of phase points entering the region between the faces A and B per unit area in time de is given by

$$
\begin{aligned}
& =\rho \dot{q}_{1} d t-\left(\rho+\frac{\partial \rho}{\partial q_{1}} d q_{1}\right)\left(\dot{q}_{1}+\frac{\partial \dot{q}_{1}}{\partial q_{1}} d q_{1}\right) d t \\
& =\rho \dot{q}_{1} d t-\rho \dot{q}_{1} d t-\rho \frac{\partial \dot{q}_{1}}{\partial q_{1}} d{t_{1}}_{1} d t-\dot{q}_{1} \frac{\partial \rho}{\partial q_{1}} d q_{1} d t \\
& \\
& -\frac{\partial \rho}{\partial q_{1}} d q_{1} \frac{\partial \dot{q}_{1}}{\partial q_{1}} d q_{1} d t
\end{aligned}
$$

By Neglecting higher ordes term we get

$$
=-\left(\rho \frac{\partial \dot{q}_{1}}{\partial q_{1}} d q_{1}+\dot{q}_{1} \frac{\partial \rho}{\partial q_{1}} d q_{1}\right) d t
$$

When $d q_{z}=1$ (separation between face t and face B is unit.

No. of phase points entering the region between the two faces per unit voums

$$
q\}=\frac{-\left(\rho \frac{d \dot{q}}{\partial q_{1}}+\dot{q}_{1} \frac{\partial \rho}{\partial q_{1}}\right) d q_{1} d t}{d q_{1}}
$$

$$
=-\left(\rho \frac{\partial \dot{q}_{1}}{\partial q_{1}}+\dot{q}_{1} \frac{\partial \rho}{\partial q_{1}}\right) d l^{\prime}
$$

Similarly, for the motion of phase points along the P_{1}-axes, the net number of phase points entering the region pes unit volume in time de is

$$
=-\left(1 \frac{\partial \dot{p}_{2}}{\partial p_{1}}+\dot{p}_{1} \frac{\partial \rho}{\partial p_{1}}\right) d t
$$

After considering all 6 N coordinates of phase space the net number of phase points entering the region pes unitvoums in time at is

$$
=-\sum_{i=1}^{3 N}\left[\left(\rho \frac{\partial \dot{q}_{i}}{\partial q_{i}}+\dot{q}_{i} \frac{\partial \rho}{\partial q_{i}}\right) d t+\left(\rho \frac{\partial \dot{p}_{L}}{\partial p_{2}}+\dot{p}_{1} \frac{\partial \rho}{\partial p_{1}}\right) d t\right]
$$

Simplifying

$$
=-\sum_{i=1}^{3 N}\left[\rho\left(\frac{\partial \dot{q}_{i}}{\partial q_{i}}+\frac{\partial \dot{p}_{i}}{\partial p_{i}}\right)+\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{2}} \dot{p}_{i}\right] d t
$$

Equation of motion for Hamiltonian $H(q, p)$

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \text { and } \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

Where $i=1,2, \cdots 3 \mathrm{~N}$
Thus, we have

$$
\begin{aligned}
& \frac{\partial \dot{q}_{i}}{\partial q_{i}}=\frac{\partial^{2} H}{\partial q_{i} \partial p_{i}} \quad \text { and } \frac{\partial \dot{p}_{i}}{\partial p_{i}}=-\frac{\partial^{2} H}{\partial p_{i} \partial q_{i}}
\end{aligned}
$$

From above equation we get

$$
\therefore \quad \frac{\partial \dot{q}_{i}}{\partial q_{i}}+\frac{\partial \dot{p}_{i}}{\partial p_{i}}=0
$$

Now, net number of phase points entering the region per unit volume in time at

$$
\begin{equation*}
\sum^{n}=-\sum_{i=1}^{3 H}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right] d t \tag{1}
\end{equation*}
$$

The change of pho points per unit volume in time de is

$$
\begin{equation*}
\frac{1}{\partial d q d p} \frac{\partial}{\partial t}(\rho d q d p) d t=\frac{\partial \rho}{\partial t} d t \tag{2}
\end{equation*}
$$

From en (1) \& (2)

$$
\frac{\partial \rho}{\partial t} d t=-\sum_{i=1}^{3 N}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}^{\prime}} \dot{p}_{i}\right] d t
$$

$$
\Rightarrow\left\{\frac{\partial \rho}{\partial t}+\sum_{i=1}^{3 N}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} p_{i}\right]\{d t=0\right.
$$

Since $d t=0$

$$
\begin{array}{r}
\Rightarrow \quad \frac{\partial \rho}{\partial t}+\sum_{i=1}^{3 N} \frac{\partial \rho}{\partial q_{i}} \frac{d q}{d t}+\sum_{i=1}^{3 N} \frac{\partial \rho}{\partial p_{i}} \frac{d p_{i}}{d t}=0 \\
{\left[\because \dot{q}_{i}=\frac{d q}{d t} \text { and } \dot{p}_{i}=\frac{d p}{d t}\right]}
\end{array}
$$

Hence $\frac{d \rho}{d t}=0$
Above prove showed that for an ensemble $\rho(q, p, t)$ is constant along the trajectory in the phase space is known as a stationary ensemble.
I This corresponds to an equilibrium situation -
case of steady state
For the steady state $\frac{\partial \rho}{\partial t}=0$

$$
\begin{aligned}
& \text { so } \quad \frac{\partial \rho}{\partial t}+\sum_{i=1}^{\partial N}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right]=0 \\
& \Rightarrow \quad \sum_{i=1}^{B N}\left[\frac{\partial \rho}{\partial q_{i}} \dot{q}_{i}+\frac{\partial \rho}{\partial p_{i}} \dot{p}_{i}\right]=0
\end{aligned}
$$

or $\quad \vec{v} \cdot \operatorname{grad} \rho=0$
Where \vec{v} is velocity in the phase space.
Hence, the system moves on a surface of constants. Thus, when S is explicitly independent of time and space.

Hence the phase prints are uniformly distributed over the relevant region of the phase space and outside the relevant region, $1=0$.

